Self-Locating Uncertainties in Many-Worlds

Matthew Fox

Perimeter Institute for Theoretical Physics mfox2@pitp.ca

Chaitanya Karamchedu

Sandia National Laboratories ckaramchedu@hmc.edu

23 September 2021

Quantum Superpositions

$$|\psi\rangle = \alpha|\uparrow\rangle + \beta|\downarrow\rangle$$

What does this mean?

$$|\psi\rangle = \alpha|\uparrow\rangle + \beta|\downarrow\rangle$$

What does this mean?

What does this NOT mean?

· the electron is spin-up

- · the electron is spin-up
- · the electron is spin-down

- · the electron is spin-up
- · the electron is spin-down
- · the electron is spin-up and spin-down

- · the electron is spin-up
- · the electron is spin-down
- · the electron is spin-up and spin-down
- \cdot the electron is neither spin-up nor spin-down

- · the electron is spin-up
- · the electron is spin-down
- · the electron is spin-up and spin-down
- · the electron is neither spin-up nor spin-down

Exhaust logical possibilities!

- · the electron is spin-up
- · the electron is spin-down
- · the electron is spin-up and spin-down
- · the electron is neither spin-up nor spin-down

Exhaust logical possibilities!

"Asking 'what is the spin of an electron in a spin superposition?" is like asking 'what is the marital status of the number 5?'."

David Albert

Bare-Naked Quantum Mechanics

quantum theori	es out there ((QFT, string th	neory, LQG,	etc.)

Many

Many quantum theories out there (QFT, string theory, LQG, etc.)	
wany quantum theories out there (Q1 1, string theory, EQ3, etc.)	

What do we mean by the qualifier "quantum" when we say a

theory is a quantum theory?

Many quantum theories out there (QFT, string theory, LQG, etc.)
What do we mean by the qualifier "quantum" when we say a

theory is a *quantum* theory?

In our mind, a quantum theory obeys three postulates:

With every quantum system there is associated a complex Hilbert space \mathscr{H} . The possible states of the quantum system are the elements (vectors) in \mathscr{H} .

With every quantum system there is associated a complex Hilbert space \mathcal{H} . The possible states of the quantum system are the elements (vectors) in \mathcal{H} .

Notable Implications:

With every quantum system there is associated a complex Hilbert space \mathscr{H} . The possible states of the quantum system are the elements (vectors) in \mathscr{H} .

Notable Implications:

· Quantum superpositions

With every quantum system there is associated a complex Hilbert space \mathscr{H} . The possible states of the quantum system are the elements (vectors) in \mathscr{H} .

Notable Implications:

- · Quantum superpositions
- · If the Universe is *just* a quantum system, then the Universe we experience must emerge from a Hilbert space structure

Two quantum systems \mathcal{A} and \mathcal{B} , with Hilbert spaces $\mathscr{H}_{\mathcal{A}}$ and $\mathscr{H}_{\mathcal{B}}$, respectively, collectively form a composite quantum system, $\mathcal{A}+\mathcal{B}$, with a Hilbert space $\mathscr{H}_{\mathcal{A}+\mathcal{B}}$ equal to $\mathscr{H}_{\mathcal{A}}\otimes\mathscr{H}_{\mathcal{B}}$.

Two quantum systems \mathcal{A} and \mathcal{B} , with Hilbert spaces $\mathscr{H}_{\mathcal{A}}$ and $\mathscr{H}_{\mathcal{B}}$, respectively, collectively form a composite quantum system, $\mathcal{A}+\mathcal{B}$, with a Hilbert space $\mathscr{H}_{\mathcal{A}+\mathcal{B}}$ equal to $\mathscr{H}_{\mathcal{A}}\otimes\mathscr{H}_{\mathcal{B}}$.

Notable Implications:

Two quantum systems \mathcal{A} and \mathcal{B} , with Hilbert spaces $\mathscr{H}_{\mathcal{A}}$ and $\mathscr{H}_{\mathcal{B}}$, respectively, collectively form a composite quantum system, $\mathcal{A}+\mathcal{B}$, with a Hilbert space $\mathscr{H}_{\mathcal{A}+\mathcal{B}}$ equal to $\mathscr{H}_{\mathcal{A}}\otimes\mathscr{H}_{\mathcal{B}}$.

Notable Implications:

· Quantum entanglement

Two quantum systems \mathcal{A} and \mathcal{B} , with Hilbert spaces $\mathscr{H}_{\mathcal{A}}$ and $\mathscr{H}_{\mathcal{B}}$, respectively, collectively form a composite quantum system, $\mathcal{A}+\mathcal{B}$, with a Hilbert space $\mathscr{H}_{\mathcal{A}+\mathcal{B}}$ equal to $\mathscr{H}_{\mathcal{A}}\otimes\mathscr{H}_{\mathcal{B}}$.

Notable Implications:

- · Quantum entanglement
- Anything reducible to quintessential quantum systems (quarks and electrons, say) is a quantum system

If $|\psi\rangle\in\mathscr{H}$ is a state of a quantum system with Hilbert space \mathscr{H} , then $|\psi\rangle$ evolves in time according to the Schrödinger equation

$$\widehat{H}|\psi\rangle = i\hbar\,\partial_t|\psi\rangle,$$

where \widehat{H} is a Hamiltonian operator on \mathscr{H} .

If $|\psi\rangle\in\mathcal{H}$ is a state of a quantum system with Hilbert space \mathcal{H} , then $|\psi\rangle$ evolves in time according to the Schrödinger equation

$$\widehat{H}|\psi\rangle = i\hbar\,\partial_t|\psi\rangle,$$

where \widehat{H} is a Hamiltonian operator on \mathscr{H} .

Notable Implications:

If $|\psi\rangle\in\mathscr{H}$ is a state of a quantum system with Hilbert space \mathscr{H} , then $|\psi\rangle$ evolves in time according to the Schrödinger equation

$$\widehat{H}|\psi\rangle = i\hbar\,\partial_t|\psi\rangle,$$

where \widehat{H} is a Hamiltonian operator on \mathscr{H} .

Notable Implications:

· Deterministic evolution

If $|\psi\rangle\in\mathcal{H}$ is a state of a quantum system with Hilbert space \mathcal{H} , then $|\psi\rangle$ evolves in time according to the Schrödinger equation

$$\widehat{H}|\psi\rangle = i\hbar\,\partial_t|\psi\rangle,$$

where \widehat{H} is a Hamiltonian operator on \mathscr{H} .

Notable Implications:

- · Deterministic evolution
- · Unitary (and hence linear) evolution

The Quantum Measurement

Problem

The Everettian Resolution

In a nut shell: take (bare-naked) quantum mechanics seriously
This entails:

In a nut shell: take (bare-naked) quantum mechanics seriously

This entails:

vector $|\psi\rangle$

· The universe has a Hilbert space \mathscr{H}_U with a quantum state

In a nut shell: take (bare-naked) quantum mechanics seriously

This entails:

- . The universe has a Hilbert space \mathscr{H}_U with a quantum state vector $|\psi\rangle$
- $\cdot \mid \psi \rangle$ evolves unitarily according to the Schrödinger equation

In a nut shell: take (bare-naked) quantum mechanics seriously

This entails:

- . The universe has a Hilbert space \mathscr{H}_U with a quantum state vector $|\psi\rangle$
- $\cdot |\psi\rangle$ evolves unitarily according to the Schrödinger equation
- · Every other quantum system is related to $|\psi\rangle$ by the partial trace of $|\psi\rangle\langle\psi|$, e.g., you:

$$\rho_{\text{you}} = \text{tr}_{(U-\text{you})} |\psi\rangle\langle\psi|$$

The DeWitt-Everett Dialogue

DeWitt: I can testify ... from personal introspection that I do not branch [i.e. exist in superposition].

DeWitt: I can testify ... from personal introspection that I do not branch [i.e. exist in superposition]. This is a vast contradiction, therefore your theory is wrong.

DeWitt: I can testify ... from personal introspection that I do not branch [i.e. exist in superposition]. This is a vast contradiction, therefore your theory is wrong.

Everett: I can plainly see that the earth doesn't really move because I don't experience its motion. But this doesn't falsify

Newtonian mechanics, because Newtonian mechanics predicts that that is exactly what I should experience if the earth is in motion.

DeWitt: I can testify ... from personal introspection that I do not branch [i.e. exist in superposition]. This is a vast contradiction, therefore your theory is wrong.

Everett: I can plainly see that the earth doesn't really move because I don't experience its motion. But this doesn't falsify

Newtonian mechanics, because Newtonian mechanics predicts that that is exactly what I should experience if the earth is in motion.

Everett: The same is true for my theory: it predicts that you would think you don't branch.

electron
$$\longleftrightarrow |\!\!\uparrow\rangle, |\!\!\downarrow\rangle$$

$$\begin{array}{c} \text{electron} \longleftrightarrow |\!\!\uparrow\rangle, |\!\!\downarrow\rangle \\ \\ \text{measuring device} \longleftrightarrow |\!\!\text{"ready"}\rangle, |\!\!\text{"up"}\rangle, |\!\!\text{"down"}\rangle \end{array}$$

$$\begin{split} & \text{electron} \longleftrightarrow |\!\!\uparrow\rangle, |\!\!\downarrow\rangle \\ & \text{measuring device} \longleftrightarrow |\!\!\text{"ready"}\,\rangle, |\!\!\text{"up"}\,\rangle, |\!\!\text{"down"}\,\rangle \\ & \text{you} \longleftrightarrow |\!\!\text{see "ready"}\,\rangle, |\!\!\text{see "up"}\,\rangle, |\!\!\text{see "down"}\,\rangle \end{split}$$

$$\begin{split} \text{electron} &\longleftrightarrow |\uparrow\rangle, |\downarrow\rangle \\ \text{measuring device} &\longleftrightarrow |\text{"ready"}\rangle, |\text{"up"}\rangle, |\text{"down"}\rangle \\ \text{you} &\longleftrightarrow |\text{see "ready"}\rangle, |\text{see "up"}\rangle, |\text{see "down"}\rangle \\ \text{environment} &\longleftrightarrow |E_-\rangle, |E_\uparrow\rangle, |E_\downarrow\rangle \end{split}$$

$$\begin{array}{c} \text{electron} \longleftrightarrow |\uparrow\rangle, |\downarrow\rangle \\ \\ \text{measuring device} \longleftrightarrow |\text{``ready''}\rangle, |\text{``up''}\rangle, |\text{``down''}\rangle \\ \\ \text{you} \longleftrightarrow |\text{see ``ready''}\rangle, |\text{see ``up''}\rangle, |\text{see ``down''}\rangle \\ \\ \text{environment} \longleftrightarrow |E_{-}\rangle, |E_{\uparrow}\rangle, |E_{\downarrow}\rangle \end{array}$$

Before measurement:

$$(\alpha |\uparrow\rangle + \beta |\downarrow\rangle) \otimes |$$
 "ready" $\rangle \otimes |$ see "ready" $\rangle \otimes |E_{-}\rangle$

$$\begin{array}{c} \text{electron} \longleftrightarrow |\uparrow\rangle, |\downarrow\rangle \\ \\ \text{measuring device} \longleftrightarrow |\text{``ready''}\rangle, |\text{``up''}\rangle, |\text{``down''}\rangle \\ \\ \text{you} \longleftrightarrow |\text{see ``ready''}\rangle, |\text{see ``up''}\rangle, |\text{see ``down''}\rangle \\ \\ \text{environment} \longleftrightarrow |E_{-}\rangle, |E_{\uparrow}\rangle, |E_{\downarrow}\rangle \end{array}$$

Before measurement:

$$(\alpha |\!\!\uparrow\rangle + \beta |\!\!\downarrow\rangle) \otimes |\!\!\text{ "ready"}\!\!\rangle \otimes |\!\!\text{see "ready"}\!\!\rangle \otimes |\!\!E_-\rangle$$

After measurement:

$$\begin{split} |\psi\rangle &\equiv \alpha |\!\!\uparrow\rangle \otimes |\!\!\text{ "up"}\!\!\rangle \otimes |\!\!\text{see "up"}\!\!\rangle \otimes |E_\uparrow\rangle \\ &+ \beta |\!\!\downarrow\rangle \otimes |\!\!\text{ "down"}\!\!\rangle \otimes |\!\!\text{see "down"}\!\!\rangle \otimes |E_\downarrow\rangle \end{split}$$

$$ho_{
m you} = {
m tr}_{(U-{
m you})} |\psi
angle \!\langle \psi|$$

$$ho_{\mathsf{you}} = \mathsf{tr}_{(U-\mathsf{you})} |\psi
angle \langle \psi|$$

 $= \begin{pmatrix} |\alpha|^2 & \langle E_{\uparrow} | E_{\downarrow} \rangle \\ \langle E_{\downarrow} | E_{\uparrow} \rangle & |\beta|^2 \end{pmatrix}$

Objections to Everett

The Probability Puzzle and the

Paths to Resolving it

The Quantum Epistemic

Separability Principle